Индикатор метиленовый голубой


Метиленовая голубая-индикатор - Справочник химика 21

    Индикатор смешанный метиловый красный (0,125 г) и метиленовый голубой (0,083 г) растворяют в 100 мл этилового спирта-ректификата. [c.279]

    Метиленовый голубой (индикатор) [c.587]

    Метиленовый голубой, индикатор, ч. д. а. [c.207]

    МЕТИЛЕНОВЫЙ ГОЛУБОЙ, ИНДИКАТОР, ЧДА [c.217]

    Индикатор смешанный метиловый красный, 0,2% раствор в спирте и метиленовый голубой, 0,1% раствор в спирте, смешивают в соотношении 1 1 по объему [c.187]


    Индикатор, спиртовой раствор 0,1%-ной метилового красного и 0,05%-ного метиленового голубого. Хранят в капельнице из темного стекла. [c.382]

    Для большей четкости точки эквивалентности применяют смесь индикатора с метиленовым голубым или метилтимоловым синим (Н 1), [c.66]

    При титровании РО/ раствором соли Bi + в качестве индикатора применяют ксиленоловый оранжевый и метилтимоловый синий [547]. Добавление к титруемому раствору метиленового голубого делает переход окраски в точке эквивалентности особенно резким. [c.37]

    Оборудование и реактивы. Бюретки на 25 мл. Пипетки на 25 мл. Плоскодонные и конические колбы на 100—250 мл. Стеклянные воронки (простые конусообразные №3 или №4). Едкий натр (0,1 н. раствор). Соляная кислота (0,1 н.). Смешанный индикатор (80 г метилового красного и 160 мг метиленового голубого растворяют в 100 мл 50%-ного этилового спирта переход окраски индикатора происходит при pH 5,5—6,6 от синего в кислой среде к зеленому в щелочной среде). [c.184]

    Определение малых значений щелочности титрованием с индикаторами затруднительно, в особенности при искусственном освещении, т. е. в ночные и вечерние смены. Использование смешанного индикатора, состоящего из равных объемов спиртовых растворов 0,2%-ного метилового красного и 0,1 -ного метиленового голубого производится для определения от красно-фиолетовой до зеленой в точке, соответствующей установленному значению показателя pH от [c.68]

    Индикатором при титровании Sb(III) перманганатом в большинстве случаев служит сам титрант, избыток которого окрашивает раствор в розовый цвет. Иногда в качестве индикатора используют метиленовый голубой [719] и метиловый оранжевый [648], в присутствии которых раствор титруют до исчезновения окраски индикатора. Рекомендуется также потенциометрическое установление конечной точки [1173, 1346, 1646]. [c.35]

    Раствор соли железа(1П) титруют раствором тиосульфата при 50° С. Индикатором служит смесь метиленового голубого и фуксина. В избытке тиосульфата метиленовый голубой восстанавливается до своего бесцветного лейкооснования [1009]. [c.101]


    Переход окраски прп титровании кальция с лаковым алым в качестве индикатора — от желтой к оранжевой. Для его улучшения вводят метиленовый голубой. Чувствительность взаимодействия лакового алого с кальцием 10 мкг С /мл. [c.66]

    В объеме этой главы невозможно описать все пути использования метиленового голубого для биологических и физиологических целей. Он несомненно является одним из самых важных биологических красителей. Его основной характер, а также легкость, с которой его можно применять, не боясь, что он окрасит все подряд, делает его ценным красителем для дифференциации клеточных ядер. Особенно эффективен он для окрашивания клеток дифтерийных бактерий. Он применяется для витального окрашивания нервной ткани, для которого был предложен новый способ, состоящий в продолжительной внутривенной перфузии его [418]. Он используется как индикатор окисления—восстановления в анализе молока [419], [c.584]

    Смешанный индикатор. Растворяют 0,166 г метиленового голубого в этаноле растворяют 0,250 г метилового красного в этаноле. Объемы обоих растворов доводят этанолом до 100 мл. Смешивают равные объемы обоих растворов. Важно точное соблюдение соотношений. [c.207]

    Качество воды. Определение растворенных сульфидов. Фотометрический метод с использованием индикатора метиленового голубого [c.530]

    Наиболее применимы индикаторы метиловый оранжевый, метиловый красный и фенолфталеин. Четкость определения точки эквивалентности прн помощи кислотно-основных индикаторов можно повысить, если использовать смесь индикатора с инертным красителем. Четкое изменение окраски наблюдается у тех индикаторов, кислотная и основная формы которых окращены в дополнительные цвета, иапример красный и зеленый. Добавляя инертный краситель к индикатору, изменяют обе окраски индикатора так, чтобы они стали дополнительными цветами. Например, при добавлении к желтому раствору метилового желтого синего раствора метиленового голубого при pH сине-фиолетовая, а при рН>3,25 — зеленая окраска. При рН = 3,25 желтый и синий цвета дополняют друг друга и наблюдается серая окраска. Смещанные индикаторы резко изменяют окраску в значительно более узком интервале pH, чем индивидуальные индикаторы. [c.231]

    Смешанный индикатор. Растворяют 0,125 г ализаринсульфо-ната натрия в 100 мл воды и 0,01 г метиленового голубого в 100 мл воды. Растворы смешивают. [c.124]

    Точку эквивалентности отмечают по изменению ойраски введенного в раствор индикатора. В качестве последнего применяют эриохром черный Т [532, 740, 741, 972, 976—978, 1121, 1413], эриохром красный В [1525], кислотный хром темно-синий [116, 301, 538, 612], тимолфталексон [752, 876, 1148, 1343], пирокате-хиновый фиолетовый [1200, 1413], метилтимоловый синий [1141, 1148], ксиленоловый оранжевый [ИЗ], 1-[2-пиридилазо]-2-нафтол [977, 1148], кислотный хром бордо И [538], фталеиновый фиолетовый [1309], пиридилазорезорцин [1148], метиленовый голубой [1394], дифенилкарбазон [1394], о,о -диоксиазокрасители, мурек-сид [760], флюоресцеинкомплексон [1518], а также гематоксилин [c.44]

    Метод заключается в обратном титровании избытка ЭДТА, не связанного в комплекс с Pu(III) состава 1 1, стандартным раствором нитрата тория при pH 2,5 с применением смешанного индикатора, состоящего из ал11зарина S и метиленового голубого. Ошибки, меньшие 1%. получены при определении около 10 мг плутония. Определению мешают элементы, образующие прочные комплексы с ЭДТА при pH 2,5, а именно железо, титан, торий и, вероятно, галлий и ванадий. [c.205]

    Попытки применить прямое титрование Pu(III) с ЭДТА оказались неудач

Метиленовый голубой метиленовый синий - Справочник химика 21

    МЕТИЛЕНОВЫЙ ГОЛУБОЙ (метиленовый синий, метиленовая синь), темно-зеленые кристаллы с бронзовым блес- [c.61]

    МЕТИЛЕНОВЫЙ СИНИЙ (метиленовая синь, метиленовый голубой) ijHjg INaS — органический краситель, темно-зеленые кристаллы с бронзовым блеском, легкорастворим в спирте, горячей воде, труднее в холодной, М. с. применяют для крашения хлопка, шерсти, шелка. М. с. интенсивно окрашивает некоторые ткани живого организма, поэтому его используют как красящее вещество в микроскопии. М, с. используют в аналитической химии для определения хлоратов, перхлоратов, ртути, олова, титана, при анализе мочи, крови, молока и др, М. с. широко применяют как антидот при отравлениях цианидами, оксидом углерода, сероводородом, нитритами, анилином и его производными. [c.160]


    МЕТИЛЕНОВЫЙ ГОЛУБОЙ (МЕТИЛЕНОВАЯ СИНЬ) [c.132]

    Адсорбция красителя на стекле. 5% раствор метиленового голубого наливают в колбу и взбалтывают, чтобы раствор обтекал стенки колбы затем выливают раствор, споласкивают колбу водой до тех пор, пока вода не будет совершенно бесцветной после этого в колбу приливают несколько см концентрированной уксусной кислоты и отмечают синюю окраску. [c.318]

    Реактивы а) реактив Фелинга (приготовление см. с. 202). 1 мл реактива должен соответствовать О,0Г) г инвертного сахара (смеси равных количеств глюкозы и фруктозы). Методика установки титра реактива Фелинга описана ниже (см. с, 224) б) метиленовая синь (метиленовая голубая), 1%-,,-ный раствор в) натрий углекислый. 15%-ный раствор г) уксуснокислый свинец (СНзСОО)2РЬ ЗМгО, 30%-ный раствор  [c.220]

    Пиридазин, пиримидин, пиразин, хиназолин, хиноксалин, феназин. Красители индаминовый синий, индулины, индантрен, флавантрон, тио-флавин, метиленовый голубой, метиленовый зеленый и др. [c.457]

    ЧЕРНИЛА (атрамент) — водный раствор синтетического органического кислотного красителя (метиленовый синий, кислотный фиолетовый, кислотный ярко-красный и т. д.) или смеси красителей с различными добавками, которые обусловливают соответствующие специфические свойства Ч. Изготовляют Ч. для письма (школьные, конторские), для авторучек, специальные (для документов), гектографические, штемпельные, для печатания и т. д. Для улучшения пишущих свойств, лучшего смачивания пера, быстрого высыхания надписей в состав Ч. вводят загустители — сахар, глицерин или этиленгликоль (в зимний период), в качестве антисептиков против загнивания и плесневения — фенол, формалин, уротропин. По своему цвету, интенсивное ги, пишущим свойствам, однородности, стойкости Ч. должны отвечать утвержденным техническим условиям и образцам-эталонам. Ч. для авторучек должны высыхать не более чем за 30 с. Такие Ч. по своему составу и консистенции значительно отличаются от чернильных паст. Например, в состав синих Ч. для авторучек входит краситель метиленовый голубой или синий, сахар, глицерин, фсиол, вода дистиллированная в состав фиолетовых Ч.— кислотный фиолетовый и кислотный ярко-красный красители, сахар, глицерин, формалин, аммиачная вода, вода дистиллированная черные Ч. содержат кислотный голубой, кислотный оранжевый и кислотный ярко-красный красители, сахар, глицерин, фенол, дистиллированную воду. [c.286]


    По Германской Фармакопее (VI) адсорбционная способность медицинского угля по отношению к метиленовому голубому (метиленовой сини) определяется следующим образом. 0,1 г высушенного при 120° и тонко просеянного медицинского угля встряхивают в стеклянном цилиндре с пришлифованной пробкой с 25 мл 0,15%-го раствора метиленовой сини, после обесцвечивания прибавляют еще 5 мл раствора краски, встряхивают и повторяют прибавление, каждый раз по 5 мл, если после сильного встряхивания все еще происходит обесцвечивание. При этом в течение 5 минут должно обесцветиться в общем не меньше 35 мл раствора метиленовой сини. Так как при этом нельзя фильтровать, то на основании одной только пробы не легко вывести заключение о том, обесцветился ли раствор или нет, в особенности, если не часто имеют дело с этим определением. Легче решить вопрос, поставив несколько параллельных проб с различным содержанием метиленовой сини, подбирая содержание таким образом, чтобы при одном количестве метиленовой сини произошло бы обесцвечивание ее, при другом — нет. Если, например, надо установить адсорбционную способность угля, который будто бы обесцвечивает 35 мл раствора метиленовой сини, то ставят одновременно пять проб с 33, 34, 35, 36 и 37 мл этого раствора. Обесцвечивание узнается легче всего по быстрому исчезновению бесцветной пены, тогда как не вполне обесцвеченный раствор метиленовой сини дает голубую пену, не исчезающую в течение некоторого времени. [c.363]

    При нагревании метиленового голубого со щелочами происходит гидролитическое отщепление одной аминогруппы Продукт реакции, м е-тиленовый фиолетовый, может рассматриваться как замешенный серой индофенол, но не представляет никакой ценности для крашения. К тиазиновым красителям относится также ализариновый ярко-синий  [c.764]

    Результат опыта А. Раствор метиленовой сини, имеющий ярко-голубой цвет, после прибавления к нему цинковой пыли и уксусной кислоты быстро обесцвечивается. [c.141]

    Испытуемое вещество сплавляют с карбонатами щелочных металлов в платиновом тигле или со смесью карбонатов и перекиси натрия в никелевом тигле. Для этого небольшое количество исследуемого продукта смешивают с пяти-, шестикратным количеством плавня и нагревают в тигле сначала на небольшом пламени, затем на пламени паяльной горелки до получения однородного плава. Плав обрабатывают соляной кислотой (отношение плав — кислота составляет 1 1), полученный раствор переносят в фарфоровую чашку и выпаривают досуха. Затем к остатку в чашке прибавляют несколько миллилитров разбавленной соляной кислоты. Нерастворившийся осадок отфильтровывают, промывают 1—2 раза дистиллированной водой, обливают на фильтре 0,1%-нкм раствором метиленового голубого в 10%-ной уксусной кислоте и затем снова промывают 1—2 раза водой для удаления избытка индикатора. В присутствии кремневой кислоты, адсорбирующей краситель, остаток на фильтре окрашивается в интенсивно-синий цвет. (Вместо метиленового голубого можно применять малахитовый зеленый.) [c.149]

    Ход определения. Взвешивают (с точностью до 0,01 г) 0,1 г угля, предварительно высушенного при температуре 110°, и переносят в колбу с притертой пробкой емкостью 100 мл. Из бюретки, в которую наливают 0,15% раствор метиленового голубого, приливают в колбу первые 10 мл, взбалтывают 5 минут и после обесцвечивания продолжают приливать раствор метиленового голубого, спуская в колбу каждый раз по 1 мл до тех пор, пока не образуется окрашенный в синий цвет раствор при выдержке в течение 5 минут. Это показывает, что адсорбционная емкость взятого осветляющего древесного угля полностью насыщена. Если первые 10 мл раствора метиленового голубого не обесцвечиваются (при низком проценте осветляющей способности исследуемого угля), то прибавление

Синька лечит. Зачем врачам понадобился краситель «метиленовый синий»

Зачем врачам понадобился краситель «метиленовый синий»

Патологоанатомам случается видеть странные вещи. Среди них — человеческий мозг нежного фисташкового оттенка. Это не признак отравления, а отголосок интенсивного лечения метиленовым синим. Однако точный диагноз «на глаз» не поставить: это вещество применяют при самых разных заболеваниях, среди которых малярия, приапизм, болезнь Альцгеймера и даже COVID-19. Давайте разберемся в том, как биологическая краска стала таким многозадачным лекарством и есть ли от нее толк.

мозги фисташкового цвета (на манер «король «Оранжевое лето» гр. Браво)...
такой цвет мозговая ткань приобретает при длительном лечении метиленовым синим pic.twitter.com/geXUr1XDwA

— лиса с пинцетом Шора (@sitovskaya) August 26, 2020

От хинина до анилина

Лечить малярию корой хинного дерева врачи додумались еще в XVII веке, если не раньше. Но означенное дерево росло только в Южной Америке, причем исключительно на склонах Анд, и к XIX веку стало окончательно ясно, что на весь мир запасов коры не хватит. Предприимчивые европейцы решили вывезти семена хинного дерева в Индию и Австралию, а правительство Перу, защищая свою монополию, шпионило за ними, устраивало на контрабандистов засады и бросало в тюрьмы. И пока перуанские правоохранители бегали за одними европейцами по предгорьям Анд, другие пытались получить хинин искусственным путем, чтобы не утруждать себя отношениями с южноамериканскими стражами порядка.

Один из них, Уильям Перкин, немного промахнулся с реакцией синтеза и получил на выходе фиолетовый раствор. Так появился первый синтетический анилиновый краситель — мовеин. Целебными свойствами хинина он не обладал, но стойко красил ткань в замечательный яркий цвет, и поэтому заставил других исследователей ринуться на поиск других синтетических красок.


Окрашенный мовеином шелковый лоскут Перкин отправил вместе с письмом сыну (на фото)
Henry Rzepa / wikimedia commons / CC BY-SA 2.0

Через 20 лет, в 1876 году, немец Генрих Каро получил метиленовый синий. В отличие от анилиновых красителей, он не прижился в текстильной промышленности, зато быстро нашел свое место в лаборатории патологоанатома Карла Вайгерта, который приспособил его для окрашивания гистологических срезов — а оттуда уже попал к кузену Вайгерта, начинающему иммунологу Паулю Эрлиху.

Именно метиленовый синий приблизил ученого к Нобелевской премии: освоив новый краситель, Эрлих научился различать в мазке крови отдельные типы клеток. От препаратов он быстро перешел к экспериментам с животными и обнаружил, что метиленовый синий особенно хорошо оседает в нервных волокнах и головном мозге. Исходя из этого, Эрлих предположил, что краситель может работать анальгетиком и блокировать передачу болевых сигналов — что вскоре подтвердил на практике. Вместе с коллегой-психиатром Артуром Эппманном Эрлих задумывался и о том, что метиленовый синий можно было бы использовать и при психических расстройствах — но они так и не решились сделать следующий шаг и проверить эту идею на людях.


Мозг пациентки, которую не спасло лечение метиленовым синим
Seth Lummus et al. / Journal of Neuropathology & Experimental Neurology, 2013

Тем временем, оказалось, что синий краситель годится не только для животных тканей, но и для паразитов — в том числе, для того самого малярийного плазмодия, который оставался непобежденным. Тогда Эрлих высказал новую идею: если краска накапливается внутри паразита в таких количествах, что выделяет его на фоне других клеток, то она может оказаться для него губительной — подобно тому, как, связываясь с болевым волокном, она тормозит передачу импульса. И действительно, вскоре, в 1891 году, Эрлиху вылечил с помощью метиленового синего двух больных малярией. Так метиленовый синий стал первым лекарством, синтезированным искусственно.

Синяя краска была не самым надежным средством от малярии. Но, за неимением лучшего, продержалась на позиции спасительного средства еще сорок лет, пока усилиям химиков-органиков не поддался наконец настоящий хинин и его производные (самый известный из которых — хлорохин). Метиленовым синим лечили, например, солдат во времена мировых войн, а те были жутко недовольны, поскольку, кроме малярийного плазмодия, лекарство окрашивало в характерный цвет белки глаз, кожу и мочу.

Впрочем нелюбимый солдатами побочный эффект был скорее на пользу — позволял проследить, действительно ли пациент принял лекарство. Поэтому метиленовый синий использовали для контроля за приемом таблеток в психиатрических клиниках, где пациенты особенно ненадежны. И до сих пор продолжают применять в странах Африки. Особенно удобно назначать краситель детям: по синим каплям на одежде или подгузнике всегда видно, чьи родители честно выполняют назначения врача.

Три кольца

Эрлих и Эппманн не рискнули проверить действие метиленового синего на людях с психиатрическими диагнозами. Их итальянский коллега, Пьетро Бодони, оказался смелее: в 1899 году он накормил красителем 14 пациентов с психозом и отчитался — все они быстро успокоились.

Впрочем, опыты Бодони не вызвали большого ажиотажа, и возможно, метиленовый синий так и не привлек бы внимания психиатров, если бы не его родственники. В попытках получить другие противомалярийные препараты химики произвели на свет целую линейку веществ того же семейства — фенотиазинов. Все они от плазмодия спасали с трудом, зато неплохо помогали успокоить пациентов перед операцией. Самый, пожалуй, известный из них — хлорпромазин — до сих пор используют как транквилизатор в психиатрических клиниках.


Сверху: серотонин и хлорпромазин, снизу анилин и метиленовый синий
CC0

В основе всех фенотиазинов (и метиленового синего в том числе) лежат три кольца: два чисто углеродных, ароматических, и еще одно с вкраплениями азота и серы. Такая структура, с одной стороны, делает эти вещества гидрофобными и помогает им проходить через мембрану клеток, а значит, преодолевать барьер между кровью и нервной тканью мозга. С другой стороны, своими кольцами они похожи на моноаминовые нейромедиаторы, например, дофамин и серотонин. Поэтому фенотиазины способны связываться с разными рецепторами для нейромедиаторов и с веществами, которые участвуют в их обмене (например, моноаминоксидазой) — а значит, могут влиять на передачу сигналов в мозге и его работу.

Среди своих психоактивных родичей метиленовый синий лучше всех изучен и проверен временем. Поэтому, как только стало ясно, на что способны фенотиазины, синий краситель бросились проверять на другие неожиданные неврологические качества. Метиленовый синий пытались применять при разных видах психоза, обнаружили у него (как и у других блокаторов моноаминоксидазы) свойства антидепрессанта и даже замахнулись было на шизофрению. Правда, до сих пор не появилось никаких убедительных данных о том, что краситель как-то от нее помогает.

Позже метиленовый синий, конечно, проверили и против болезни Альцгеймера. Выяснилось, что он мешает молекулам белка тау собираться в токсичные агрегаты внутри нейронов — и это дало основу для клинических испытаний терапии, которые идут сейчас.

Кроме того, оказалось, что метиленовый синий повышает результаты тестов на когнитивные функции не только у тех, кто лечится от деменции, но и у здоровых людей — по крайней мере, в том, что касается концентрации внимания и рабочей памяти. Так метиленовый синий стал еще и кандидатом в ноотропы и объектом внимания биохакеров. Впрочем, даже они не забывают напоминать, что технология еще не отработана, а при передозировке возможны побочные эффекты — например, серотониновый синдром, который в редких случаях смертелен.

Жонглируя электронами

Когда Эрлих заметил, что его новая краска скапливается в нервных тканях, он еще не знал о существовании моноаминоксидазы и нейромедиаторов. У него на этот счет была своя теория. Он довольно быстро выяснил, что метиленовый синий может работать как окислитель и восстановитель: он может отдать электрон, теряя при этом цвет, а потом становится синим снова, если отберет электрон у кислорода. Именно поэтому, думал Эрлих, краситель тяготеет к нервной ткани — она потребляет много кислорода, а значит, там есть запас электронов.

Кое в чем Эрлих снова оказался прав. Метиленовый синий действительно вступает в окислительно-восстановительные реакции (поэтому, например, окрашенные им ткани синеют на воздухе, а потом постепенно блекнут). Именно это свойство — в нужный момент поделиться своими электронами и вызвать в клетке окислительный стресс — позволило ему победить малярийного плазмодия, а затем и других паразитов. Поэтому сегодня, например, врачи прописывают метиленовый синий для лечения бактериальных урологических инфекций.

Это же свойство — отдавать электроны — оказалось полезно и в другом контексте, при метгемоглобинемии. Метгемоглобин — это форма гемоглобина, в которой он не может связывать кислород, поскольку железо в его составе находится в неправильной степени окисления (не +2, как обычно, а +3). Такая форма может возникать и в норме, но обычно составляет несущественный процент от всего гемоглобина в эритроцитах. А вот при отравлении некоторыми веществами такого гемоглобина становится много, и насыщение крови кислородом резко падает. От этого как раз и спасает метиленовый синий, отдавая атому железа свой электрон.

В редких случаях метгемоглобинемия бывает наследственной — тогда дефицит кислорода становится постоянным, а кожа человека приобретает синеватый оттенок. Такие формы тоже лечат с помощью метиленового синего: именно он, как это ни парадоксально, помог порозоветь семейству синих людей из Кентукки, которые передавали метгемоглобинемию из поколения в поколение.

На этом достижения метиленового синего не заканчиваются. Благодаря своим электронам — то лишним, то недостающим — он блокирует производство двух важных провоспалительных веществ: оксида азота и арахидоновой кислоты. Поэтому его можно применять в самых разных случаях, когда речь идет об избыточном воспалении: при анафилактическом и септическом шоке, при пониженном давлении и ишемии, его пробовали использовать даже при приапизме и анальном зуде. Неудивительно, что о нем снова вспомнили и в начале коронавирусной пандемии: первая фаза клинических испытаний метиленового синего против COVID-19 должны завершиться в сентябре.

Таким образом, обладатель фисташкового мозга, прославившийся недавно в твиттере, при жизни мог быть кем угодно: больным малярией жителем Африки, участником очередных клинических испытаний, бесстрашным биохакером или просто онкобольным, которому метиленовый синий вводили как краситель (да-да, иногда его еще используют по прямому назначению), чтобы определить границу здоровой ткани. Однако, кем бы он ни был, инъекция синей краски ему не помогла остаться в живых — и это напоминает о том, что, даже если метиленовый синий и окажется панацеей, то мы пока не умеем ею пользоваться.

Полина Лосева

Оригинал

Читайте также:

Биологи научились лечить язву гидрогелем

Перевернутые кораблики отправили в плавание по левитирующему слою жидкости

Астрономы впервые напрямую зарегистрировали рождение черной дыры промежуточной массы

Метиленовый синий [LifeBio.wiki]

  • Торговые названия: Urelene blue, Provayblue, Proveblue и другие 1)
  • Категория препарата при беременности:

  • США: X (противопоказано)

  • Способы введения: перорально, внутривенно

  • Легальное положение: отпускается только по рецепту

  • Формула: C16H18ClN3S

  • Молярная масса: 319,85 г / моль

Метиленовый синий, также известный как хлорид метилтиониния, является лекарственным средством и красителем. В качестве лекарственного средства он, в основном, используется для лечения метгемоглобинемии. В частности, он используется для лечения уровня метгемоглобинемии, который превышает 30% или если симптомы присутствуют, несмотря на кислородную терапию. Ранее он был использован при отравления цианидами и инфекциях мочевыводящих путей, но такое использование больше не рекомендуется. Обычно препарат вводят путем инъекции в вену. Общие побочные эффекты включают головную боль, рвоту, спутанность сознания, одышку и высокое кровяное давление. Другие побочные эффекты включают серотониновый синдром, распад красных кровяных клеток и аллергические реакции. Использование часто связано с тем, что моча, пот и стул приобретают цвет от синего до зеленого. Хотя использование препарата во время беременности может нанести вред ребенку, отсутствие такого использования при метгемоглобинемии, вероятно, более опасно. Метиленовый синий является тиазиновым красителем. Он действует путем преобразования трехвалентного железа в гемоглобин и в двухвалентное железо. Метиленовый синий был впервые изготовлен в 1876 году Генрихом Каро 2). Он включен в Перечень основных лекарственных средств Всемирной организации здравоохранения – список наиболее эффективных и безопасных лекарств, необходимых в системе здравоохранения. В Соединенных Штатах флакон на 50 мг стоит около 191,40 долларов США 3). В Соединенном Королевстве, флакон на 50 мг стоит около 39,38 фунтов.

Использование в медицине

Метгемоглобинемия

Хотя многие тексты указывают на то, что метиленовый синий обладает свойствами окислителя, он действует в качестве окислителя только при очень высоких дозах. В фармакологических дозах, он обладает свойствами восстановителя. Именно по этой причине, метиленовый синий используется в качестве лекарственного средства для лечения метгемоглобинемии. Это заболевание может возникнуть при приеме некоторых фармацевтических препаратов, токсинов или бобов. 4) Обычно, через зависимые от NADH или NADPH ферменты метгемоглобин-редуктазы, метгемоглобин восстанавливается обратно в гемоглобин. Когда большое количество метгемоглобина встречается вторично по отношению к токсинам, метгемоглобин-редуктазы оказываются перегруженными. Метиленовый синий, при внутривенном введении в качестве противоядия, сам сначала восстанавливается до лейкометиленового синего, который затем уменьшает группу гема от метгемоглобина до гемоглобина. Метиленовый синий может сократить период полураспада метгемоглобина от часов до минут. Однако, в высоких дозах метиленовый синий фактически вызывает метгемоглобинемию, меняя этот путь.

В сочетании со светом

Метиленовый синий в сочетании со светом использовался для лечения стойкого псориаза бляшек. 5)

Инфекции мочевых путей

Метиленовый синий является компонентом часто назначаемого мочегонного анальгетика / противоинфекционного / противоспазматического средства, известного как «Prosed», комбинация лекарственных средств, которая также содержит фенилсалицилат, бензойную кислоту, гиосциамин сульфат и метенамин (он же гексаметилентетрамин). 6)

Отравление цианидом

Так как восстановительный потенциал метиленового синего подобен потенциалу кислорода и может быть уменьшен компонентами электронной транспортной цепи, большие дозы метиленового синего иногда используются как противоядие от отравления цианидом калия. Этот метод впервые был успешно опробован в 1933 году доктором Матильдой Молденхауэр Брукс в Сан-Франциско, хотя впервые его продемонстрировал Бо Сахлин из университета Лунда в 1926 году. 7)

Краска или пятна

Метиленовый синий используется в эндоскопической полипэктомии в качестве дополнения к физиологическому раствору или адреналину и используется для инъекции в подслизистую оболочку вокруг полипа, подлежащего удалению. Это позволяет идентифицировать плоскость подслизистой ткани после удаления полипа, что полезно при определении того, нужно ли удалять больше ткани, и существует ли высокий риск перфорации. Метиленовый синий также используется в качестве красителя в хромоэндоскопии и распыляется на слизистую оболочку желудочно-кишечного тракта, чтобы выявить дисплазию или предраковые поражения. Внутривенно вводимый метиленовый синий легко выделяется в мочу и, таким образом, может использоваться для тестирования мочевых путей на наличие отверстий или свищей. В хирургических операциях, таких как диссекции сигнальных лимфатических узлов, метиленовый синий может быть использован для визуального слежения за лимфатическим дренированием соответствующих тканей. Аналогичным образом, метиленовый синий добавляется к костному цементу в ортопедических операциях для обеспечения легкого различия между природной костью и цементом. Кроме того, метиленовый синий ускоряет упрочнение костного цемента, увеличивая скорость, с которой костный цемент может эффективно применяться. Метиленовый синий используется в качестве средства визуализации / ориентации в ряде медицинских устройств, включая хирургическую герметичную пленку, TissuePatch. Когда метиленовый синий «полихромируется» (окисляется в растворе или «созревает» при грибковом метаболизме, как первоначально было отмечено в диссертации д-ра Д.Л. Романовского в 1890-х годах), он последовательно деметилируется и образует все три, ди, моно и неметильные промежуточные соединения, которые представляют собой Azure B, Azure A, Azure C и тионин, соответственно 8). Метиленовый синий является основой базофильной части спектра эффекта Романовского-Гимзы. При использовании только синтетических Azure B и Eosin Y, он может служить стандартным пятном Гимзы; но без метиленового синего, нормальные нейтрофильные гранулы имеют тенденцию к избыточному окрашиванию и выглядят как токсичные гранулы. С другой стороны, если используется метиленовый синий, это может способствовать нормальному виду гранул нейтрофилов и может дополнительно также усиливать окрашивание ядрышек и полихроматофильных эритроцитов (ретикулоцитов) 9). Традиционное применение метиленового синего – прижизненное или суправальное окрашивание нервных волокон, эффект, впервые описанный Полом Эрлихом в 1887 году. Разбавленный раствор красителя либо вводят в ткань, либо наносят на небольшие свежие кусочки ткани. Выборочная синяя окраска развивается при воздействии воздуха (кислорода) и может фиксироваться путем погружения окрашенного образца в водный раствор молибдата аммония. Жизненно важный метиленовый синий в прошлом широко использовался для исследования иннервации мышц, кожи и внутренних органов. 10) Механизм селективного поглощения красителя не совсем понятен; жизненно важное окрашивание нервных волокон в коже предотвращается уабаином, препаратом, который ингибирует Na / K-АТФазу клеточных мембран 11).

Плацебо

Метиленовый синий использовался в качестве плацебо; врачи говорили своим пациентам, что их моча изменит цвет и можно расценивать это как признак того, что их здоровье улучшилось. Этот же побочный эффект затрудняет тестирование метиленового синего в традиционных плацебо-контролируемых клинических исследованиях.

Ифосфамидная токсичность

Другое применение метиленового синего заключается в лечении ифосфамидной нейротоксичности. Метиленовый синий был впервые зарегистрирован для лечения и профилактики нейропсихиатрической токсичности ифосфамида в 1994 году. Ядовитый метаболит ифосфамида, хлорацетальдегид (CAA), разрушает митохондриальную дыхательную цепь, что приводит к накоплению никотинамидадениндинуклеотидного водорода (NADH). Метиленовый синий действует как альтернативный акцептор электронов и реверсирует ингибирование NADH глюконеогенеза печени, а также ингибирует превращение хлорэтиламина в хлорацетальдегид и ингибирует множественные активности аминооксидазы, препятствуя образованию CAA 12). Дозировка метиленового синего для лечения нейротоксичности ифосфамида варьируется в зависимости от его использования одновременно в качестве адъюванта при инфузии ифосфамида в сравнении с его применением для изменения психиатрических симптомов, которые проявляются после завершения инфузии ифосфамида. Согласно сообщениям, метиленовая синь при приеме до шести доз в день приводила к улучшению симптомов в течение от 10 минут до нескольких дней. В качестве альтернативы, было предложено внутривенное введение метиленового синего каждые шесть часов для профилактики во время лечения ифосфамидом у пациентов с историей нейропсихиатрической токсичности ифосфамида. Профилактический прием метиленового синего за день до начала применения ифосфамида и три раза в день во время ифосфамидной химиотерапии был рекомендован для снижения частоты возникновения нейротоксичности ифосфамида 13).

Вазоплегический синдром

В литературе сообщалось об использовании метиленового синего в качестве дополнения для лечения людей, которые испытывают вазоплегический синдром после кардиохирургии. 14)

Побочные эффекты

  • Сердечно-сосудистая система: гипертония, предокальная боль

  • Центральная нервная система: головокружение, спутанность сознания, головная боль, лихорадка Дерматологические эффекты: окрашивание кожи, некроз места инъекции

  • Желудочно-кишечные: изменение цвета фекалий, тошнота, рвота, боль в животе

  • Генито-мочевые: обесцвечивание мочи (дозы свыше 80 мкг), раздражение мочевого пузыря

  • Гематологические: анемия 15)
  • Метиленовый синий является ингибитором моноаминоксидазы (ИМАО), и при внутривенном введении в дозах, превышающих 5 мг / кг, может вызвать серьезную токсичность серотонина, серотониновый синдром, если используется в сочетании с любыми селективными ингибиторами обратного захвата серотонина (СИОЗС) или другим ингибитором обратного захвата серотонина (например, дулоксетином, сибутрамином, венлафаксином, кломипрамином, имипрамином). 16) Он вызывает гемолитическую анемию у носителей ферментативного дефицита G6PD (фавизм).

Химия

Метиленовый синий не следует путать с метиловым синим, другим гистологическим пятном, новым метиленовым синим или с метил-виолетами, часто используемыми в качестве индикаторов рН. Метиленовый синий представляет собой гетероциклическое ароматическое химическое соединение (производное фенотиазина) с химической формулой C16h28N3SCl. При комнатной температуре, он выглядит как твердый, непахучий, темно-зеленый порошок, который при растворении в воде дает синий раствор. Гидратированная форма содержит 3 молекулы воды на единицу метиленового синего. Метиленовый синий имеет рН 3 в воде (10 г / л) при 25 ° C (77 ° F).

Получение

Это соединение может быть получено обработкой диметил-4-фенилендиамина сероводородом, растворенным в хлористоводородной кислоте, с последующим окислением хлористым железом. 17)

Абсорбция света

Метиленовый синий является сильнодействующим катионным красителем с максимальным поглощением света около 670 нм. Специфика поглощения зависит от ряда факторов, включая протонирование, адсорбцию других материалов и метахромазию – образование димеров и агрегатов высших порядков в зависимости от концентрации и других взаимодействий. 18)

Использования

Окислительно-восстановительный показатель

Метиленовый синий широко используется в качестве окислительно-восстановительного показателя в аналитической химии. Растворы этого вещества синие, когда они находятся в окислительной среде, но становятся бесцветными, если подвергаются действию восстанавливающего агента. Окислительно-восстановительные свойства можно наблюдать при классической демонстрации химической кинетики в общей химии, эксперименте с «синей бутылкой». Обычно раствор готовят из глюкозы (декстрозы), метиленового синего и гидроксида натрия. При встряхивании бутылки, кислород окисляет метиленовый синий, и раствор становится синим. Декстроза будет постепенно восстанавливать метилен синий до его бесцветной, восстановленной формы. Следовательно, когда растворенная декстроза полностью израсходуется, раствор снова станет синим.

Генератор оксида водорода

Метиленовый синий также является фотосенсибилизатором, используемым для создания синглетного кислорода при воздействии как кислорода, так и света. Он используется в этом отношении для получения органических пероксидов по реакции Дильса-Альдера, которая запрещена по спину при нормальном атмосферном триплетном кислороде.

Сульфидный анализ

Образование метиленового синего после реакции сероводорода с диметил-п-фенилендиамином и железом (III) при рН 0,4-0,7 используют для определения фотометрическими измерениями концентрации сульфида в диапазоне от 0,020 до 1,50 мг / л (от 20 частей на миллиард до 1,5 ЧНМ). Тест очень чувствителен, и синяя окраска, развивающаяся при контакте реагентов с растворенным h3S, стабильна в течение 60 мин. Готовые к применению наборы, такие как сульфидный тест Spectroquant 19), облегчают рутинные анализы. Тест на сульфид метиленового синего является удобным методом, часто используемым в почвенной микробиологии для быстрого обнаружения в воде метаболической активности сульфатредуцирующих бактерий (SRB). Следует отметить, что в этом тесте метиленовый синий является продуктом реакции, а не реагентом. Добавление сильного восстановителя, такого как аскорбиновая кислота, к сульфидсодержащему раствору, иногда используется для предотвращения окисления сульфида из атмосферного кислорода. Хотя это, безусловно, является хорошей мерой предосторожности для определения сульфида с ионоселективным электродом, однако это может препятствовать развитию синего цвета, если свежеобразованный метиленовый синий также будет восстановлен, как описано выше в абзаце о окислительно-восстановительном индикаторе.

Водное тестирование

Цветная реакция в подкисленном водном растворе метиленового синего, содержащего хлороформ, может обнаруживать анионные поверхностно-активные вещества в образце воды. Такой тест известен как анализ MBAS (анализ активных веществ метиленового синего). Однако анализ MBAS не может отличить конкретные поверхностно-активные вещества. Некоторыми примерами анионных поверхностно-активных веществ являются карбоксилаты, фосфаты, сульфаты и сульфонаты.

Значение метиленового синего в мелком заполнителе

Значение метиленовое синего отражает количество глинистых минералов в совокупных образцах. Раствор метиленового синего последовательно добавляют к мелкому заполнителю, который перемешивается в воде. Присутствие свободного раствора красителя можно проверить с помощью теста пятен на фильтровальной бумаге. 20)

Биологическое окрашивание и т. д.

В биологии, метиленовый синий используется в качестве красителя для ряда различных процедур окрашивания, таких как пятно Райт и краситель Дженнера. Так как это временный метод окрашивания, метиленовый синий можно также использовать для исследования РНК или ДНК под микроскопом или в геле: например, раствор метиленового синего можно использовать для окрашивания РНК на гибридизационных мембранах в северном блоттинге для проверки количества присутствующей нуклеиновой кислоты. Хотя метиленовый синий не так чувствителен, как бромид этидия, он менее токсичен и не интеркалирует в цепи нуклеиновых кислот, что позволяет избежать интерференции с удержанием нуклеиновых кислот на гибридизационных мембранах или с самим процессом гибридизации. Его также можно использовать в качестве индикатора того, живы ли эукариотические клетки, такие как дрожжи. Метиленовый синий восстанавливается в жизнеспособных клетках, оставляя их неокрашенными. Однако, мертвые клетки неспособны уменьшить окисленный метиленовый синий, и клетки окрашиваются в синий цвет. Метиленовый синий может мешать дыханию дрожжей, так как он собирает ионы водорода, полученные в процессе.

Аквакультура

Метиленовый синий используется в аквакультуре и среди любителей тропических рыб в качестве средства для лечения грибковых инфекций. Он также может быть эффективен при лечении рыб, инфицированных ихтиофтириозом, хотя комбинация зеленого малахита и формальдегида является гораздо более эффективной против паразитических протозоев Ichthyophthirius multifiliis. Метиленовый синий обычно используется, чтобы защитить недавно отложенные яйца рыбы от заражения грибком или бактериями. Это полезно, когда любитель хочет искусственно вылупить яйца рыбы. Метиленовый синий также очень эффективен при использовании в качестве «лечебной ванны для рыб» для лечения отравления аммиаком, нитритом и цианидом, а также для местного и внутреннего лечения раненых или больных рыб в качестве «первого ответа» 21).

История

Метиленовый синий был описан как «первый полностью синтетический препарат, используемый в медицине». Метиленовый синий был впервые подготовлен в 1876 году немецким химиком Хайнрихом Каро. Его использование при лечении малярии было впервые применено Полом Гуттманом и Полом Эрлихом в 1891 году. В течение этого периода до первой мировой войны такие исследователи, как Эрлих, считали, что эти лекарства и красители работали аналогично, преимущественно окрашивая патогены и, возможно, нанося им вред. Метиленовый синий продолжал использоваться во время второй мировой войны, причем солдаты его недолюбливали: «Даже в туалете, когда мы мочимся и видим темно-синюю мочу, это не очень приятно». Недавно было возобновлено противомалярийное применение этого препарата. В 1933 году Матильда Брукс обнаружила, что метиленовый синий является противоядием от отравления угарным газом и отравления цианидом. Голубая моча использовалась для контроля соблюдения нормативных режимов приема лекарств у психических пациентов. Это вызвало интерес – с 1890-х годов по сегодняшний день – к антидепрессивным и другим психотропным эффектам препаратам. Метиленовый синий стал ведущим соединением в исследованиях, ведущих к открытию хлорпромазина. 22)

Наименования

Международное непатентованное название (МНН) метиленового синего – метилтионинийхлорид. 23)

Исследование

Малярия

Метилен Синий был идентифицирован Полом Эрлихом приблизительно в 1891 как возможное средство для лечения малярии. Он перестал использоваться против малярии во время Тихоокеанской войны в тропиках, так как американские и союзные солдаты не любили его за два видных, но обратимых побочных эффекта: образование синей мочи и становление белка глаза синим. Интерес к его применению в качестве противомалярийного препарата был недавно возобновлен, особенно из-за его низкой цены. В настоящее время проводится несколько клинических испытаний, в которых делаются попытки найти подходящую комбинацию лекарственных средств. Согласно исследованиям, проведенным среди детей в Африке, этот препарат, по-видимому, обладает эффективностью против малярии, но попытки сочетать метиленовую синь с хлорохином были разочаровывающими. 24)

Болезнь Альцгеймера

Метионин изучался для лечения деменции Альцгеймера 25). Предполагается, что метиленовый синий влияет на нейродегенерацию при болезни Альцгеймера путем ингибирования агрегации белков тау. Метиленовый синий также влияет на диссоциацию амилоидов. TauRx Therapeutics переформулировали препарат под торговой маркой LMTX. Эта формулировка проходит клинические испытания фазы 3 для безопасности и эффективности как «TRx0237». LMTX решает некоторые из проблем, связанных с дозозависимостью, которые были подняты ранее в исследовании. 26)

Биполярное расстройство

Метиленовый синий изучался как вспомогательное средство при лечении биполярного расстройства. Изучалась саркома Капоши, связанная со СПИДом, вирус Западного Нила и инактивирование золотистого стафилококка и ВИЧ-1. 27) Более 70 лет известно, что фенотиазиновые красители и свет обладают вирулицидными свойствами.

Метиленовый синий как нейропротектор

Травматическая черепно-мозговая травма (ЧМТ) приводит к постоянным неврологическим нарушениям, а метиленовый синий (MС) оказывает нейропротективное действие центральной нервной системы. 1) Однако только одно предыдущее исследование изучало эффективность МС в контролируемой кортикальной модели травматического повреждения ЧМТ. Кроме того, еще предстоит выяснить конкретные механизмы, лежащие в основе действия МС против ЧМТ. В одном из исследований выяснялось нейропротекторное действие МС на ЧМТ и возможные механизмы такого действия. В мышиной модели ЧМТ животных произвольно делили на фиктивную, плацебо (нормальный солевой раствор) или МС-группы. Длительность лечения составила 24 и 72 часа (острая фаза ЧМТ) и 14 дней (хроническая фаза ЧМТ) после ЧМТ. Во время острой фазы определяли содержание воды в мозге (BWC), уровни гибели нейронов и аутофагии, а во всех временных точках оценивали неврологический дефицит, объем травмы и активацию микроглии. Поврежденное полушарие BWC было значительно увеличено через 24 ч после ЧМТ, и было ослаблено после лечения MС. Наблюдалось значительно большее количество выживших нейронов в группе MС, по сравнению с группой плацебо через 24 и 72 ч после ЧМТ. В острой фазе, животные, обработанные МС, демонстрировали значительно повышенную экспрессию отношения Beclin 1 и повышенные показатели LC3-II к LC3-I по сравнению с группой плацебо, что указывает на увеличение скорости аутофагии. Неврологические функциональные дефициты, измеренные с использованием модифицированного неврологического показателя тяжести, были значительно ниже в острой фазе у животных, получавших МС, и объемы поражения головного мозга у животных, получавших МС, были значительно ниже по сравнению с другими группами во все временные точки. Микроглия активировалась через 24 ч после ЧМТ, достигала максимума через 72 ч и сохранялась до 14 дней после ЧМТ. Хотя количество Iba-1-позитивных клеток в плацебо и MС-группах через 24 ч после ЧМТ не были существенно различными, отмеченное ингибирование микроглии наблюдалось в группе MС через 72 ч и 14 дней после ЧМТ. Эти результаты показали, что МС оказывает нейропротекторное действие за счет увеличения аутофагии, уменьшения отека мозга и ингибирования активации микроглии. В другом исследовании были рассмотрены взаимоотношения структура-активность MС in vitro с использованием MС и шести структурно связанных соединений. 2) MС уменьшает образование митохондриального супероксида за счет альтернативного переноса электрона, минуя митохондриальные комплексы I-III. MС уменьшает образование реактивных свободных радикалов и обеспечивает нейропротекцию в клетках HT-22 против глутамата, IAA и токсичности ротенона. В частности, МС не обеспечивает защиту от прямого окислительного стресса, вызванного глюкозооксидазой. Замена боковой цепи на 10-азоте МС приводила к 1000-кратному снижению защитной способности против нейротоксичности глутамата. Соединения без боковых цепей в положениях 3 и 7, хлорфенотиазин и фенотиазин, имеют четкие окислительно-восстановительные потенциалы по сравнению с МС и не способны усиливать перенос митохондрий, в то же время получают прямые антиоксидантные действия против глутамата, IAA и ротеноновых действий. Хлорофенотиазин проявлял прямое антиоксидантное действие в анализе лизата митохондрий по сравнению с МС, что требовало восстановления при помощи NADH и митохондрий. МС повышал сложную внутривенную экспрессию и активность, в то время как 2-хлорофенотиазин не оказывал никакого эффекта. Исследование показало, что МС может ослаблять продуцирование супероксида, функционируя как альтернативный носитель переноса митохондрий и как регенерируемый антиоксидант в митохондриях.

Ядерные и митохондриальные нарушения при прогерии

Прогерия, или фатальная преждевременная старость, вызвана мутацией одного нуклеотида в гене LMNA. Предыдущие доклады были посвящены ядерным фенотипам в клетках HGPS, однако потенциальный вклад митохондрий, ключевого игрока в нормальном старении, остается неясным. Используя микроскопический анализ с высоким разрешением, была продемонстрирована значительно увеличенная доля набухших и фрагментированных митохондрий и заметное снижение подвижности митохондрий в фибробластных клетках HGPS. Примечательно, что экспрессия PGC-1α, центрального регулятора биогенеза митохондрий, ингибировалась прогерином. Чтобы спасти митохондриальные дефекты, клетки HGPS были обработаны митохондриальным антиоксидантным метиленовым синим (MС). Анализ показал, что МС не только уменьшил митохондриальные дефекты, но также помог выявить ядерные аномалии в клетках HGPS. Дополнительный анализ показал, что обработка МС высвобождает прогерин из ядерной мембраны, восстанавливает потерю перинуклеарных гетерохроматинов и корректирует экспрессию нерегулируемого гена в клетках HGPS. Вместе эти результаты демонстрируют роль митохондриальной дисфункции в развитии фенотипов преждевременного старения в клетках HGPS и предлагают МС в качестве перспективного терапевтического подхода к HGPS.

Клеточные и молекулярные действия метиленового синего в нервной системе

Недавние исследования показывают, что МС оказывает благотворное влияние при болезни Альцгеймера и улучшает память. Хотя модуляция пути cGMP считается наиболее значительным эффектом MС, опосредующим его фармакологические действия, недавние исследования показывают, что он имеет несколько клеточных и молекулярных мишеней. В большинстве случаев, биологические эффекты и клиническое применение МС диктуются его уникальными физико-химическими свойствами, включая его планарную структуру, окислительно-восстановительную химию, ионные заряды и характеристики спектра света.

:Tags

Список использованной литературы:

1) Hamilton, Richart (2015). Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. p. 471. ISBN 9781284057560 2) Ahmad, Iqbal; Aqil, Farrukh (2008). New Strategies Combating Bacterial Infection. John Wiley & Sons. p. 91. ISBN 9783527622948. 3) «Provayblue Prices, Coupons & Patient Assistance Programs - Drugs.com». www.drugs.com. Retrieved 12 January 2017 4) Manual of Clinical Hematology, Joseph Mazza 5) Salah M.; Samy N.; Fadel M. (January 2009). «Methylene blue mediated photodynamic therapy for resistant plaque psoriasis». J. Drugs Dermatol. 8 (1): 42–9. PMID 19180895 6) «Prosed DS (Methenamine, Salicylate, Methylene Blue, Benzoic Acid Atropine and Hyoscyamine) Drug Information: Description, User Reviews, Drug Side Effects, Interactions - Prescribing Information at RxList» 7) Hanzlik, P. J. (4 February 1933). «Methylene Blue As Antidote for Cyanide Poisoning». JAMA. 100 (5): 357. doi:10.1001/jama.1933.02740050053028 8) Wilson TM. «ON THE CHEMISTRY AND STAINING PROPERTIES OF CERTAIN DERIVATIVES OF THE METHYLENE BLUE GROUP WHEN COMBINED WITH EOSIN». J Exp Med. 9: 645–70. doi:10.1084/jem.9.6.645. PMC 2124692 Freely accessible. PMID 19867116 9) Dacie and Lewis Practical Haematology 10th ed, p61 10) Zacks Zacks SI (1973) The Motor Endplate, 2nd ed. Huntington, NY: Krieger 11) Kiernan JA (1974) Effects of metabolic inhibitors on vital staining with methylene blue. Histochemistry 40: 51-57 12) Alici-Evcimen Y.; Breitbart W.S. (October 2007). «Ifosfamide neuropsychiatric toxicity in patients with cancer». Psychooncology. 16 (10): 956–960. doi:10.1002/pon.1161. PMID 17278152 13) Aeschlimann T.; Cerny, T; Küpfer, A (1996). «Inhibition of (mono)amine oxidase activity and prevention of ifosfamide encephalopathy by methylene blue». Drug. Metab. Dispos. 24 (12): 1336–1339. PMID 8971139 14) Stawicki SP, Sims C, Sarani B, Grossman MD, Gracias VH (May 2008). «Methylene blue and vasoplegia: who, when, and how?». Mini Rev Med Chem. 8 (5): 472–90. doi:10.2174/138955708784223477. PMID 18473936 15) Harvey J.W.; Keitt A.S. (May 1983). «Studies of the efficacy and potential hazards of methylene blue therapy in aniline-induced methaemoglobinaemia». Br. J. Haematol. 54 (1): 29–41. doi:10.1111/j.1365-2141.1983.tb02064.x. PMID 6849836 16) Gillman P.K. (October 2006). «Methylene blue implicated in potentially fatal serotonin toxicity». Anaesthesia. 61 (10): 1013–4. doi:10.1111/j.1365-2044.2006.04808.x. PMID 16978328 17) L. Michaelis; M. P. Schubert; S. Granick (1940). «Semiquinone Radicals of the Thiazines». J. Am. Chem. Soc. 62 (1): 204–211. doi:10.1021/ja01858a060 18) J. Cenens; R. A. Schoonheydt (1988). «Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension» (PDF). Clay and Clay Minerals. 36 (3): 214–224. doi:10.1346/ccmn.1988.0360302 19) «Analytik und Probenvorbereitung» 20) Construction Standard CS3:2013 – Aggregates for Concrete 21) Badische Anilin- und Sodafabrik [BASF] (Mannheim, Germany), «Verfahren zur Darstellung blauer Farbstoffe aus Dimethylanilin und anderen tertiaren aromatischen Monaminen» (Method for preparation of blue dyes from dimethylaniline and other tertiary aromatic monoamines), Deutsches Reich Patent no. 1886 (December 15, 1877). Available on-line at: P. Friedlaender, Fortschritte der Theerfarbenfabrikation und verwandter Industriezweige (Progress of the manufacture of coal-tar dyes and related branches of industry), volume 1 (Berlin, Germany: Julius Springer, 1888), pages 247-249 22) Schirmer H.; Coulibaly B.; Stich A.; et al. (2003). «Methylene blue as an antimalarial agent—past and future». Redox Rep. 8 (5): 272–276. doi:10.1179/135100003225002899. PMID 14962363 23) Linz A.J.; Greenham R.K.; Fallon L.F. (May 2006). «Methemoglobinemia: an industrial outbreak among rubber molding workers». J. Occup. Environ. Med. 48 (5): 523–8. doi:10.1097/01.jom.0000201815.32098.99. PMID 16688009 24) Meissner P.E.; Mandi G.; Coulibaly B.; et al. (2006). «Methylene blue for malaria in Africa: results from a dose-finding study in combination with chloroquine». Malaria Journal. 5: 84. doi:10.1186/1475-2875-5-84. PMC 1617109 Freely accessible. PMID 17026773 25) «Alzheimer's drug 'halts' decline». BBC News. 2008-07-30. Retrieved 2008-07-30 26) Bonda, D. J.; Lee, H.-P.; Lee, H.; Friedlich, A. L.; Perry, G.; Zhu, X.; Smith, M. A. (2010). «Novel therapeutics for Alzheimer's disease: An update». Current Opinion in Drug Discovery & Development. 13 (2): 235–246. PMC 2931269 Freely accessible. PMID 20205057 27) Floyd R.A.; Schneider J.E.; Dittmer D.P. (March 2004). «Methylene blue photoinactivation of RNA viruses». Antiviral Res. 61 (3): 141–51. doi:10.1016/j.antiviral.2003.11.004. PMID 15168794

метиленовый_синий.txt · Последние изменения: 2017/05/14 14:37 — nataly

Синька лечит

Патологоанатомам случается видеть странные вещи. Среди них — человеческий мозг нежного фисташкового оттенка. Это не признак отравления, а отголосок интенсивного лечения метиленовым синим. Однако точный диагноз «на глаз» не поставить: это вещество применяют при самых разных заболеваниях, среди которых малярия, приапизм, болезнь Альцгеймера и даже COVID-19. Давайте разберемся в том, как биологическая краска стала таким многозадачным лекарством и есть ли от нее толк.

мозги фисташкового цвета (на манер «король «Оранжевое лето» гр. Браво)...
такой цвет мозговая ткань приобретает при длительном лечении метиленовым синим pic.twitter.com/geXUr1XDwA

— лиса с пинцетом Шора (@sitovskaya) August 26, 2020

От хинина до анилина

Лечить малярию корой хинного дерева врачи додумались еще в XVII веке, если не раньше. Но означенное дерево росло только в Южной Америке, причем исключительно на склонах Анд, и к XIX веку стало окончательно ясно, что на весь мир запасов коры не хватит. Предприимчивые европейцы решили вывезти семена хинного дерева в Индию и Австралию, а правительство Перу, защищая свою монополию, шпионило за ними, устраивало на контрабандистов засады и бросало в тюрьмы. И пока перуанские правоохранители бегали за одними европейцами по предгорьям Анд, другие пытались получить хинин искусственным путем, чтобы не утруждать себя отношениями с южноамериканскими стражами порядка.

Один из них, Уильям Перкин, немного промахнулся с реакцией синтеза и получил на выходе фиолетовый раствор. Так появился первый синтетический анилиновый краситель — мовеин. Целебными свойствами хинина он не обладал, но стойко красил ткань в замечательный яркий цвет, и поэтому заставил других исследователей ринуться на поиск других синтетических красок.

Окрашенный мовеином шелковый лоскут Перкин отправил вместе с письмом сыну (на фото)

Henry Rzepa / wikimedia commons / CC BY-SA 2.0

Через 20 лет, в 1876 году, немец Генрих Каро получил метиленовый синий. В отличие от анилиновых красителей, он не прижился в текстильной промышленности, зато быстро нашел свое место в лаборатории патологоанатома Карла Вайгерта, который приспособил его для окрашивания гистологических срезов — а оттуда уже попал к кузену Вайгерта, начинающему иммунологу Паулю Эрлиху.

Именно метиленовый синий приблизил ученого к Нобелевской премии: освоив новый краситель, Эрлих научился различать в мазке крови отдельные типы клеток. От препаратов он быстро перешел к экспериментам с животными и обнаружил, что метиленовый синий особенно хорошо оседает в нервных волокнах и головном мозге. Исходя из этого, Эрлих предположил, что краситель может работать анальгетиком и блокировать передачу болевых сигналов — что вскоре подтвердил на практике. Вместе с коллегой-психиатром Артуром Эппманном Эрлих задумывался и о том, что метиленовый синий можно было бы использовать и при психических расстройствах — но они так и не решились сделать следующий шаг и проверить эту идею на людях.

Мозг пациентки, которую не спасло лечение метиленовым синим

Seth Lummus et al. / Journal of Neuropathology & Experimental Neurology, 2013

Тем временем, оказалось, что синий краситель годится не только для животных тканей, но и для паразитов — в том числе, для того самого малярийного плазмодия, который оставался непобежденным. Тогда Эрлих высказал новую идею: если краска накапливается внутри паразита в таких количествах, что выделяет его на фоне других клеток, то она может оказаться для него губительной — подобно тому, как, связываясь с болевым волокном, она тормозит передачу импульса. И действительно, вскоре, в 1891 году, Эрлиху вылечил с помощью метиленового синего двух больных малярией. Так метиленовый синий стал первым лекарством, синтезированным искусственно.

Синяя краска была не самым надежным средством от малярии. Но, за неимением лучшего, продержалась на позиции спасительного средства еще сорок лет, пока усилиям химиков-органиков не поддался наконец настоящий хинин и его производные (самый известный из которых — хлорохин). Метиленовым синим лечили, например, солдат во времена мировых войн, а те были жутко недовольны, поскольку, кроме малярийного плазмодия, лекарство окрашивало в характерный цвет белки глаз, кожу и мочу.

Впрочем нелюбимый солдатами побочный эффект был скорее на пользу — позволял проследить, действительно ли пациент принял лекарство. Поэтому метиленовый синий использовали для контроля за приемом таблеток в психиатрических клиниках, где пациенты особенно ненадежны. И до сих пор продолжают применять в странах Африки. Особенно удобно назначать краситель детям: по синим каплям на одежде или подгузнике всегда видно, чьи родители честно выполняют назначения врача.


Три кольца

Эрлих и Эппманн не рискнули проверить действие метиленового синего на людях с психиатрическими диагнозами. Их итальянский коллега, Пьетро Бодони, оказался смелее: в 1899 году он накормил красителем 14 пациентов с психозом и отчитался — все они быстро успокоились.

Впрочем, опыты Бодони не вызвали большого ажиотажа, и возможно, метиленовый синий так и не привлек бы внимания психиатров, если бы не его родственники. В попытках получить другие противомалярийные препараты химики произвели на свет целую линейку веществ того же семейства — фенотиазинов. Все они от плазмодия спасали с трудом, зато неплохо помогали успокоить пациентов перед операцией. Самый, пожалуй, известный из них — хлорпромазин — до сих пор используют как транквилизатор в психиатрических клиниках.

Сверху: серотонин и хлорпромазин, снизу анилин и метиленовый синий

CC0

В основе всех фенотиазинов (и метиленового синего в том числе) лежат три кольца: два чисто углеродных, ароматических, и еще одно с вкраплениями азота и серы. Такая структура, с одной стороны, делает эти вещества гидрофобными и помогает им проходить через мембрану клеток, а значит, преодолевать барьер между кровью и нервной тканью мозга. С другой стороны, своими кольцами они похожи на моноаминовые нейромедиаторы, например, дофамин и серотонин. Поэтому фенотиазины способны связываться с разными рецепторами для нейромедиаторов и с веществами, которые участвуют в их обмене (например, моноаминоксидазой) — а значит, могут влиять на передачу сигналов в мозге и его работу.

Среди своих психоактивных родичей метиленовый синий лучше всех изучен и проверен временем. Поэтому, как только стало ясно, на что способны фенотиазины, синий краситель бросились проверять на другие неожиданные неврологические качества. Метиленовый синий пытались применять при разных видах психоза, обнаружили у него (как и у других блокаторов моноаминоксидазы) свойства антидепрессанта и даже замахнулись было на шизофрению. Правда, до сих пор не появилось никаких убедительных данных о том, что краситель как-то от нее помогает.

Позже метиленовый синий, конечно, проверили и против болезни Альцгеймера. Выяснилось, что он мешает молекулам белка тау собираться в токсичные агрегаты внутри нейронов — и это дало основу для клинических испытаний терапии, которые идут сейчас.

Кроме того, оказалось, что метиленовый синий повышает результаты тестов на когнитивные функции не только у тех, кто лечится от деменции, но и у здоровых людей — по крайней мере, в том, что касается концентрации внимания и рабочей памяти. Так метиленовый синий стал еще и кандидатом в ноотропы и объектом внимания биохакеров. Впрочем, даже они не забывают напоминать, что технология еще не отработана, а при передозировке возможны побочные эффекты — например, серотониновый синдром, который в редких случаях смертелен.


Жонглируя электронами

Когда Эрлих заметил, что его новая краска скапливается в нервных тканях, он еще не знал о существовании моноаминоксидазы и нейромедиаторов. У него на этот счет была своя теория. Он довольно быстро выяснил, что метиленовый синий может работать как окислитель и восстановитель: он может отдать электрон, теряя при этом цвет, а потом становится синим снова, если отберет электрон у кислорода. Именно поэтому, думал Эрлих, краситель тяготеет к нервной ткани — она потребляет много кислорода, а значит, там есть запас электронов.

Кое в чем Эрлих снова оказался прав. Метиленовый синий действительно вступает в окислительно-восстановительные реакции (поэтому, например, окрашенные им ткани синеют на воздухе, а потом постепенно блекнут). Именно это свойство — в нужный момент поделиться своими электронами и вызвать в клетке окислительный стресс — позволило ему победить малярийного плазмодия, а затем и других паразитов. Поэтому сегодня, например, врачи прописывают метиленовый синий для лечения бактериальных урологических инфекций.

Это же свойство — отдавать электроны — оказалось полезно и в другом контексте, при метгемоглобинемии. Метгемоглобин — это форма гемоглобина, в которой он не может связывать кислород, поскольку железо в его составе находится в неправильной степени окисления (не +2, как обычно, а +3). Такая форма может возникать и в норме, но обычно составляет несущественный процент от всего гемоглобина в эритроцитах. А вот при отравлении некоторыми веществами такого гемоглобина становится много, и насыщение крови кислородом резко падает. От этого как раз и спасает метиленовый синий, отдавая атому железа свой электрон.

В редких случаях метгемоглобинемия бывает наследственной — тогда дефицит кислорода становится постоянным, а кожа человека приобретает синеватый оттенок. Такие формы тоже лечат с помощью метиленового синего: именно он, как это ни парадоксально, помог порозоветь семейству синих людей из Кентукки, которые передавали метгемоглобинемию из поколения в поколение.

На этом достижения метиленового синего не заканчиваются. Благодаря своим электронам — то лишним, то недостающим — он блокирует производство важных провоспалительных веществ: оксида азота и производных арахидоновой кислоты. Поэтому его можно применять в самых разных случаях, когда речь идет об избыточном воспалении: при анафилактическом и септическом шоке, при пониженном давлении и ишемии, его пробовали использовать даже при приапизме и анальном зуде. Неудивительно, что о нем снова вспомнили и в начале коронавирусной пандемии: первая фаза клинических испытаний метиленового синего против COVID-19 должна завершиться в сентябре.

Таким образом, обладатель фисташкового мозга, прославившийся недавно в твиттере, при жизни мог быть кем угодно: больным малярией жителем Африки, участником очередных клинических испытаний, бесстрашным биохакером или просто онкобольным, которому метиленовый синий вводили как краситель (да-да, иногда его еще используют по прямому назначению), чтобы определить границу здоровой ткани. Однако, кем бы он ни был, инъекция синей краски ему не помогла остаться в живых — и это напоминает о том, что, даже если метиленовый синий и окажется панацеей, то мы пока не умеем ею пользоваться.

Полина Лосева

Метиленовый синий, определение - Справочник химика 21

    Изменение окраски некоторых индикаторов не очень хорошо заметно, особенно при искусственном освещении обычными лампами. Можно сделать изменение окраски более заметным, если применять смешанный индикатор. Для этого подбирают определенную смесь двух индикаторов или смешивают индикатор с подходящим красителем, окраска которого не зависит от pH раствора. Так, например, при изменении pH от 5 до 3 окраска метилоранжевого изменяется от желтого к красному. Переход можно сделать более заметным, если смешать метилоранжевый с метиленовым синим. Этот краситель не изменяет своей окраски при изменении pH в указанных пределах однако цвет красителя накладывается на цвет метилоранжевого и происходит следующее при pH 5 раствор окрашен в зеленый цвет (смесь желтого и синего), а при ph4 окраска становится фиолетовой (смесь красного и синего). Таким образом, смешанный индикатор в конце титрования дает переход от зеленого к фиолетовому это изменение цвета более заметно, чем изменение от желтого к красному. [c.310]
    Ионные ассоциаты электронейтральны и, следовательно, менее гидратированы, чем образующие их ионы. Поэтому они хорошо экстрагируются. Для экстракции обычно применяют апро-тонные растворители, в которых ассоциаты практически не ионизированы. Экстракцию анионов ПАВ проводят при pH водной фазы 3,8, при котором реагирующие вещества находятся в ионизированном состоянии. Метиленовый синий хлороформом не экстрагируется, и следовательно, не мешает фотометрическому определению ПАВ, Высокая интенсивность окраски ионных ассоциатов е х,=б5о нн = 2,2-К) обусловливает достаточно низкий предел обнаружения. [c.76]

    В настоящее время адсорбцией красителей, в частности метиленовой сини, пользуются для определения удельной поверхности различных веществ, что может быть объяснено сравнительно простой техникой эксперимента, а также тем, что в ряде случаев, например на производствах, необходима сравнительная [c.120]

    МЕТИЛЕНОВЫЙ СИНИЙ (метиленовая синь, метиленовый голубой) ijHjg INaS — органический краситель, темно-зеленые кристаллы с бронзовым блеском, легкорастворим в спирте, горячей воде, труднее в холодной, М. с. применяют для крашения хлопка, шерсти, шелка. М. с. интенсивно окрашивает некоторые ткани живого организма, поэтому его используют как красящее вещество в микроскопии. М, с. используют в аналитической химии для определения хлоратов, перхлоратов, ртути, олова, титана, при анализе мочи, крови, молока и др, М. с. широко применяют как антидот при отравлениях цианидами, оксидом углерода, сероводородом, нитритами, анилином и его производными. [c.160]

    Общепризнанными методами определения сорбционных характеристик и констант АУ сл /жат сорбционная емкость по бензолу, иоду, фенолу, мелассе и метиленовому синему определение площадей поверхности, размеров и объемов пор методами БЭТ и ртутной порометрии. Знание этих характеристик позволяет предсказывать поведение системы сорбат — сорбент в условиях сорбции из смеси известного состава. [c.104]

    Определение содержания свободных органических кислот. Аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 2 мм. 25 г измельченных плодов шиповника помещают в колбу вместимостью 250 мл, заливают 200 мл воды и выдерживают в течение 2 ч на кипящей водяной бане, затем охлаждают, количественно переносят в мерную колбу вместимостью 250 мл, доводят объем извлечения водой до метки и перемешивают. Отбирают 10 мл извлечения, помещают в колбу вместимостью 500 мл, прибавляют 200—300 мл свежепрокипяченной воды, 1 мл I % спиртового раствора фенолфталеина, 2 мл 0,1 % раствора метиленового синего и титруют раствором натра едкого (0,1 моль/л) до появления в пене лилово-красной окраски. [c.296]


    Результат опыта. После промывания водно-ацетоновой смесью во всех трех колонках наблюдается одинаковая картина смесь красителей четко разделилась на два слоя. Верхний слой голубого цвета — метиленовая синь, -1 нижний слой красного цвета — фуксин. Таким образом, несмотря на то что в колонки красители поступали в различной последовательности, разделение их произошло в строго определенном порядке. Это свидетельствует о том, что оба красителя обладают различной капиллярной активностью по отношению к адсорбенту. Метиленовая синь является более капиллярно активным веществом по сравнению с фуксином. [c.216]

    Определение ПАВ в растворе. Очищенный раствор метиленового синего вносят в делительную воронку вместимостью 250 мл, наливают 100 мл водного анализируемого раствора, содержащего ПАВ, и далее поступают аналогично приготовлению стандартных растворов. Приготовленный раствор фотометрируют относительно раствора сравнения с выбранным светофильтром. Измерения повторяют пять раз и по средним значениям поглощения, пользуясь градуировочным графиком, находят содержание ПАВ в анализируемом растворе. Методом наименьших квадратов находят доверительный интервал и стандартное отклонение. [c.77]

    Для определения знака заряда коллоидных частиц на полоску фильтровальной бумаги наносят по одной капле интенсивно окрашенных золей, например берлинской лазури, гидроокиси железа или красителей метиленовой сини, эозина и др., затем сравнивают характер образующихся на бумаге пятен и делают выводы о знаке заряда окрашенных частиц исследуемых растворов. [c.230]

    Содержание железа в препарате не должно превышать 0.06%, мышьяка - не более 0,0001 "о, влаги — не более 15%. Для определения адсорбционной способности 2 г препарата смешивают с 40 мл воды и прибавляют 18,5 мл 0,15"в-ного раствора метиленовой сини. После взбалтывания в течение 2 минут жидкость над осадком должна быть бесцветна и прозрачна. [c.70]

    Испытание с помощью метиленовой сини служит для определения доли активной глины в буровом растворе или в образце сланца. При этом испытании измеряется общая катионообменная способность присутствующих глин. Его полезно проводить вместе с определением содержания твердой фазы для оценки коллоидных характеристик глинистых минералов. Аналогично можно выявлять характеристики частиц выбуренного глинистого сланца и оценивать степень его диспергируемости и [c.29]

    Приближенное определение в промысловых условиях ЕП (но не видов катионов) по адсорбции метиленовой сини описано в главе 3. [c.147]

    Для определения содержания мертвых клеток на предметное стекло наносят по одной капле дрожжей и раствора метиленовой сини (1 5000), накрывают покровным стеклом и через 2 мин микро-скопируют. В поле зрения микроскопа считают все дрожжевые клетки, затем только окрашенные, после чего препарат передвигают и подсчет ведут в новом

Метиленовый синий, Часть 2: Индикатор химика

Декабрь 2006 г.

Эта статья является второй из серии, состоящей из двух частей, посвященных метиленовому синему. Метиленовый синий имеет важное применение как в биологии, так и в химии. В статье «Хлорное соединение месяца» в прошлом месяце рассматривается использование метиленового синего в биологии.

Введение

Химическая структура метиленового синего, C16h28N3ClS,
включает три объединенных кольца атомов.Каждый немаркированный угол
(вершина) каждого шестиугольного кольца представляет собой расположение
атом углерода - можете ли вы определить местонахождение всех 16 атомов углерода в структуре?

Метиленовый синий, обычное пятно, используемое биологами, чтобы помочь им увидеть бактерии и другие формы жизни под микроскопом, также является инструментом химика. По цвету метиленовый синий указывает на присутствие или отсутствие кислорода.Кислород необходим для многих форм жизни на Земле, поэтому любое соединение, которое может помочь обнаружить его присутствие, обязательно будет полезным.

Метиленовый синий: индикатор кислорода

Вода, содержащая индикатор метиленового синего, имеет синий цвет при наличии кислорода. Темно-синий цвет может быть достигнут, если накрыть раствор водой и метиленовым синим и энергично встряхнуть его, чтобы смешать кислород из воздуха с водой. Если из раствора удалить кислород, синий цвет исчезнет.

Окружающая среда, богатая кислородом, называется «окислительной». Окисляющие химические вещества, такие как кислород и хлор, отрывают электроны от атомов других элементов. Химические элементы, которые обладают таким сильным притяжением для электронов, что они могут «отрывать» электроны от других типов атомов, известны как окислители и очень полезны в химии. Метиленовый синий указывает на присутствие окислителей, потому что он сам окисляется этими соединениями. Когда из метиленового синего удаляются электроны, образовавшаяся молекула придает раствору синий цвет, что является явным признаком химического изменения.

Молоко: есть кислород?

Продукты, зараженные бактериями, представляют серьезную угрозу для здоровья населения. Сырое молоко нагревается, чтобы уничтожить любые бактерии, которые могут присутствовать в процессе, называемом пастеризация .

Однажды к пастеризованным образцам молока добавляли метиленовый синий, чтобы убедиться, что молоко не содержит бактерий. Если синий цвет пробы молока исчез в течение периода тестирования, вероятно, бактерии потребляли кислород, и молоко не было пастеризовано должным образом.Если образец молока оставался синего цвета в течение периода тестирования, предполагалось, что бактерии отсутствуют.

Окислительные и восстанавливающие среды в природе

Богатая кислородом атмосфера Земли, что неудивительно, является естественно окисляющей средой, как и текущие и бурлящие воды океанов и рек нашей планеты.Поверхностные воды содержат растворенный кислород из атмосферы (факт, который ценят рыбы, поскольку они получают весь необходимый кислород из воды, поступающей через жабры). Ученые называют среду, богатую кислородом, «аэробной».

Бедные кислородом воды, такие как те, что встречаются в болотах и ​​болотах, являются «восстанавливающей» средой, также известной как «анаэробная». Анаэробные воды богаты разлагающимися органическими веществами, такими как мертвые листья растений, стебли и насекомые. Кислород, который обычно помогает химически расщеплять органические вещества, отсутствует в анаэробной среде.

Анаэробные болота прошлого являются причиной сегодняшних залежей угля. Уголь образуется в течение миллионов лет, когда некогда живое органическое вещество накапливается, разлагается и сжимается в твердый черный материал, который становится полезным топливом.

Дополнительные вопросы:

  1. Узнайте больше о пастеризации и опишите шаги. В честь кого назван этот процесс и почему?

  2. Посмотрите: чем метиленовый синий полезен людям, разводящим тропических рыб?

  3. Изобретите другое применение метиленового синего помимо описанных в этой серии статей.

Чтобы просмотреть список предыдущих функций «Хлорсодержащее соединение месяца», щелкните Вот.

.

Метиленовый синий - Sciencemadness Wiki

Метиленовый синий , также известный как хлорид метилтиониния - это органическое химическое соединение, производное фенотиазина с химической формулой C 16 H 18 N 3 SCl , широко используется в медицине, биологии и химия.

Метиленовый синий не следует путать с метиленовым синим, который также является пятном для гистологии, или новым метиленовым синим.

Недвижимость

Химическая промышленность

Метиленовый синий растворяется в воде с образованием темно-синего раствора.

Физический

Метиленовый синий - это темно-зеленое (или черно-зеленое) твердое вещество, слабо растворимое в воде, где оно дает темно-синий раствор. Твердое вещество обычно встречается в виде тригидрата. Более растворим в ледяной уксусной кислоте, хлороформе, этаноле. Он имеет слабый запах, напоминающий некоторым людям органические ткани, например кожу.

Наличие

Твердый метиленовый синий продается различными поставщиками химикатов, а также его можно приобрести в Интернете.

1% водный раствор можно приобрести в аптеках или зоомагазинах.

Препарат

Метиленовый синий может быть получен обработкой диметил-4-фенилендиамина сероводородом, растворенным в соляной кислоте, с последующим окислением хлоридом железа.

Однако намного дешевле просто купить состав.

Проектов

  • Антимикробный агент
  • Противоядие от отравления цианидом и оксидом углерода
  • Биологическое окрашивание
  • Эксперимент с голубой бутылкой
  • Сульфидный анализ
  • Метиленовый синий значение мелкого заполнителя
  • Генератор перекиси

Обращение

Безопасность

Метиленовый синий малотоксичен, но окрашивает в синий цвет почти все, к чему прикасается.

Хранилище

В закрытых бутылках из янтаря, вдали от света, так как свет разрушает метиленовый синий.

Утилизация

Специальной утилизации не требуется.

Список литературы

Соответствующие темы Sciencemadness

.

Раствор индикатора метиловый красный-метиленовый синий CAS #:

Раствор индикатора метиловый красный-метиленовый синий Основная информация
Метиловый красный-метиленовый синий индикаторный раствор Химические свойства
Раствор индикатора метиловый красный-метиленовый синий Использование и синтез
Метиловый красный-метиленовый синий индикаторный раствор Продукты и сырье для приготовления
.

Метиленовый синий, биологический индикатор - Купите метиленовый синий, биологический индикатор, продукт-биологический индикатор метиленовый синий на Alibaba.com

Количество:
Образцы:
60,00 долларов США / килограмм, 1 килограмм (минимальный заказ): купить образцы

0 штук выбрано, всего $ США

Посмотреть детали

Стоимость доставки:
Зависит от количества заказа.
Время выполнения:
7 дней после получения оплаты
.

Индикатор метиленовый синий


Индикатор метиленового синего Поставщики

Глобальные (30) Поставщики КИТАЙ 30 Глобальный 30

Поставщик Тел. Факс Электронная почта Страна Продлист Преимущество
Shanghai Yanmu Industrial Co., ООО
[email protected] КИТАЙ 6723 58
Beijing Xinhua Lvyuan Technology Co., Ltd.
724124204 @ qq.com КИТАЙ 1962 58
Shenzhen Branch Science and Technology Co., Ltd.
[email protected] КИТАЙ 6478 58
Компания Dongguan Runbo Biological Technology Co., ООО
[email protected] КИТАЙ 5944 58
Suzhou Ruinuode Biotechnology Co., Ltd.
[email protected] КИТАЙ 6063 58
Shanghai Guduo Biological Technology Co., Ltd.
КИТАЙ 6267 58
Цзянси Jianglan Pure Biological Reagent Co., ООО
[email protected] КИТАЙ 6143 58
Shanghai Yuanmu Biological Technology Co., Ltd.
КИТАЙ 6186 58
Чанчжоу Beiyuanxin Biological Technology Co., Ltd.
КИТАЙ 4375 58
Shanghai Qiming Biological Technology Co., ООО
КИТАЙ 6512 58

Авторские права 2017 © ChemicalBook.Все права защищены

.

Метиленовый синий краситель (MB 119)

Полный протокол (PDF) | Паспорт безопасности (PDF) | Просмотреть продукт в прайс-листе США

Метиленовый синий краситель - это водный раствор метиленового синего, разработанный для количественной и качественной оценки РНК и ДНК, иммобилизованных на гибридизационных мембранах. Его можно использовать для проверки количества РНК на гибридизационных мембранах при Нозерн-блоттинге. В отличие от канцерогенного агента, бромида этидия, краситель метиленового синего не интеркалирует в цепи нуклеиновых кислот и, соответственно, не мешает удержанию нуклеиновых кислот на гибридизационных мембранах или процессу гибридизации (1).Метиленовый синий краситель был протестирован и признан подходящим для нейлоновых / пластиковых или нитроцеллюлозных мембран, хотя нитроцеллюлоза проявляет повышенное фоновое окрашивание. Окраска метиленового синего многоразового использования и определяет примерно 25 нг РНК или ДНК на полосу. Процедура окрашивания быстрая (10 мин.) И простая.

Список литературы

  1. Маниатис Т., Фрич Э.Ф. и Сэмбрук Дж. 1982. Molecular Cloning. Колд Спринг Харбор Пресс. Колд-Спринг-Харбор, Нью-Йорк.
.

Смотрите также